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Abstract

Development and improvement of quality control tests for live attenuated vaccines are a high 

priority because of safety concerns. Live attenuated influenza vaccine (LAIV) viruses are 6:2 

reassortants containing the hemagglutinin (HA) and neuraminidase (NA) gene segments from 

circulating influenza viruses to induce protective immune responses, and the six internal gene 

segments from a cold-adapted Master Donor Virus (MDV). LAIV candidate viruses for the 2012–

2013 seasons, A/Victoria/361/2011-CDC-LV1 (LV1) and B/Texas/06/2011-CDC-LV2B (LV2B), 

were created by classical reassortment of A/Victoria/361/2011 and MDV-A A/Leningrad/

134/17/57 (H2N2) or B/Texas/06/2011 and MDV-B B/USSR/60/69. In an attempt to provide 

better identity and stability testing for quality control of LV1 and LV2B, sensitive real-time RT-

PCR assays (rRT-PCR) were developed to detect the presence of undesired gene segments (HA 

and NA from MDV and the six internal genes from the seasonal influenza viruses). The sensitivity 

of rRT-PCR assays designed for each gene segment ranged from 0.08 to 0.8 EID50 (50% of Egg 

Infectious Dose) per reaction for the detection of undesired genes in LV1 and from 0.1 to 1 EID50 

per reaction for the detection of undesired genes in LV2B. No undesired genes were detected 

either before or after five passages of LV1 or LV2B in eggs. The complete genome sequencing of 

LV1 and LV2B confirmed the results of rRT-PCR, demonstrating the utility of the new rRT-PCR 

assays to provide the evidence for the homogeneity of the prepared vaccine candidate.
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1. Introduction

Influenza A and B viruses are responsible for annual epidemics and significant morbidity 

and mortality in the human population worldwide (Thompson et al., 2003). Vaccination is 

an important intervention for preventing influenza and reducing the public health impact of 

epidemics and pandemics (Ambrose et al., 2011; Osterholm et al., 2012). Global Pandemic 

Influenza Action Plan to increase vaccine supply was initiated by the World Health 

Organization (WHO) in November of 2006 and refined further in 2011. One of the 

objectives was to expand vaccine production capacity by building new production facilities 

to strengthen pandemic influenza preparedness and response. The Institute of Experimental 

Medicine (IEM, St Petersburg, Russia) contributed to the Global Pandemic Influenza Action 

Plan by establishing an agreement with the WHO to supply Russian LAIV reassortant 

viruses to manufacturers in developing countries who could then provide influenza vaccines 

to the public (Rudenko et al., 2011). The increased international demand of Russian LAIV 

reassortant viruses prompted the WHO and IEM to establish a back-up facility at the Centers 

of Disease Control and Prevention (CDC), Influenza Division to prepare and incorporate 

quality assessment of LAIV reassortants for international use.

Seasonal influenza vaccines contain two types A viruses (H1N1 and H3N2) and one type B 

virus to elicit immunity to currently circulating influenza viruses (Fiore et al., 2009). Two 

major types of influenza vaccines are licensed for human use: trivalent inactivated influenza 

vaccine (TIV) and LAIV. LAIV is administered intranasally which mimics natural infection 

and protects against the disease caused by the influenza viruses (Aleksandrova, 1977; Cox et 

al., 2004; Maassab and DeBorde, 1985).

The development of LAIV became possible with the generation of cold-adapted (ca) type A 

and B Master Donor Viruses (MDVs). Both MDVs have three phenotypes: (1) allow 

efficient viral replication at 25 °C and 33 °C (ca), (2) restrict replication at temperatures 

above 39 °C (temperature-sensitive, ts), and (3) do not cause classical influenza-like illness 

and are restricted in replication in the lower respiratory tract (attenuated, att) (Maassab and 

Bryant, 1999; Murphy and Coelingh, 2002; Rudenko et al., 1996). LAIV are 6:2 reassortant 

viruses that contain the HA and NA gene segments from circulating influenza viruses to 

induce protective immune responses and the six internal gene segments (PB1, PB2, PA, NP, 

M, and NS) from MDVs provide ca, ts and att phenotypes of LAIV. In addition to 

conferring the ts and ca phenotypes, MDV also allows the reassortant viruses to replicate 

efficiently in embryonated chicken eggs as all licensed LAIVs are currently produced in 

embryonated chicken eggs.

Due to constant antigenic drift of circulating influenza viruses, the individual strains of the 

vaccine are updated annually based on WHO recommendations. A/Victoria/361/2011 

(H3N2)-like and B/Wisconsin/1/2010-like viruses were recommended by the WHO for 

vaccine use in the 2012–2013 influenza season. Classical reassortment methods were used to 

produce vaccine candidate viruses by co-infection of A/Victoria/361/2011 and MDV-A A/

Leningrad/134/17/57 (H2N2) or B/Texas/06/2011 and MDV-B B/USSR/60/69 followed by 

genotyping a number of virus progeny for selection of the 6:2 reassortants. To enhance the 

genetic homogeneity, virus cloning by serial limiting dilution in eggs was performed. 
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Sensitive control of reassortant genetic composition is necessary to provide evidence that 

there are no contaminating wild type (wt) viruses present that may replicate efficiently in 

patients and cause illness and to assure that the vaccine strain does not contain HA and NA 

from MDVs. A challenge for the limiting dilution cloning in eggs method is the possibility 

of obtaining an impure vaccine candidate. According to WHO guidelines for generation and 

characterization of LAIV candidates, biological materials for vaccine production, such as 

seed viruses and intermediates should be fully and up-to-date characterized to assure the 

quality, safety, and efficacy of LAIV for intranasal administration (WHO, 2009). The safety 

concerns necessitate accurate, sensitive and reliable methods to characterize the quality of 

LAIV seed candidates generated by classical reassortment. The current techniques for 

identity/homogeneity testing of reassortant influenza vaccines are the ones used for 

genotyping – analysis of restriction fragment length polymorphism of viral genes amplified 

by RT-PCR (Fulvini et al., 2011; Klimov and Cox, 1995; Sakamoto et al., 1996), multiplex 

RT-PCR (Ha et al., 2006; Lee et al., 2010) and Sanger sequencing – all are based on 

conventional RT-PCR method. In an attempt to provide better quality control of LAIV 

candidate viruses and to ensure the uniform composition of the A/Victoria/

361/2011(H3N2)-CDC-LV1 (LV1) and B/Texas/06/2011-CDC-LV2B (LV2B) reassortants 

(designated as Master Virus Seed, MVS), real-time RT-PCR assays were developed to 

confirm the lack of any genetic material of undesired origin in the reassortant viruses.

2. Materials and methods

2.1. Viruses

Egg adapted wt influenza virus strains A/Victoria/361/2011 (passage history in eggs – 

E3/E2, where E#/means number of egg passages in submission laboratory and/E# means 

number of egg passages in CDC) and B/Texas/06/2011 (E4) were obtained from CDC 

repository. The clones of cold-adapted MDV-A A/Leningrad/134/17/57(H2N2), and MDV-

B B/USSR/60/69 were obtained at the IEM, St Petersburg, Russia. MDV stocks were 

prepared in 10-day-old SPF eggs (Charles River Laboratories Inc., Wilmington, MA) and 

stored at −80 °C. Infectious titer of wt and MDVs were measured by 50% egg infectious 

dose per milliliter (EID50/ml) as previously described (Huprikar and Rabinowitz, 1980). 

Briefly, 10-fold serial dilutions of allantoic fluid were made in PBS (137 mM NaCl, 10 mM 

phosphate, 2.7 mM KCl, pH of 7.4) and 0.2 ml of each dilution was inoculated into 10-day-

old SPF eggs. Five eggs were infected with each virus dilution and incubated at 32 °C for 48 

h for influenza A virus and 72 h for influenza B virus. Harvested allantoic fluids were tested 

for HA activity using 0.5% turkey red blood cells (tRBC). The virus titer was calculated 

using Reed and Muench method (Reed and Muench, 1938).

2.2. Reassortment of ca donor and wt influenza viruses

Reassortant influenza viruses that possess the internal genes of MDV-A or MDV-B and the 

surface genes of A/Victoria/361/2011 or B/Texas/06/2011, respectively, were prepared 

according to a method developed by the IEM, St Petersburg, Russia (Aleksandrova, 1977; 

Wareing et al., 2002). Briefly, equal doses (~106 EID50) of the donor and wt strains were 

inoculated into 10-day-old SPF eggs and incubated at 32 °C for 2 (influenza A) or 3 

(influenza B) days. HA-positive allantoic fluids were combined and diluted 1:10 with 
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antiserum prepared against the MDV-A in ferrets and against MDV-B in rabbits (provided 

by IEM, St Petersburg, Russia, through WHO). The virus–serum mixtures were incubated 

overnight at 4 °C and then passaged once in SPF eggs at 25 °C for 6 days. If needed, a blind 

passage at 32 °C was performed. All HA-positive allantoic fluids were combined. A second 

selective passage of HA-positive allantoic fluids was then carried out in the presence of 

antiserum at 25 °C followed by cloning procedures (Wareing et al., 2002).

2.3. Isolation of viral RNA

RNA was isolated from influenza virus-containing allantoic fluids and purified on the 

MagnaPure LC (Roche, San Francisco, CA) using the MagNA Pure Total Nucleic Acid Kit 

(Roche, San Francisco, CA) following the manufacturer’s instructions. Clarified allantoic 

fluid of infected eggs (200 μL) was used for RNA isolation. RNAs were eluted in a final 

volume of 50 μL of RNase-free water.

2.4. Genotyping of reassortants

Genome composition of reassortant influenza viruses was assessed by standard 

hemagglutination inhibition assay (for HA) and pyrosequencing analysis (for NA and the 

other six genes) (Deng et al., 2011).

2.5. Real time RT-PCR (rRT-PCR)

Strain-specific and segment-specific primers/probe sets for rRT-PCR were designed for 

genes of A/Leningrad/134/17/57 (Table 1), A/Victoria/361/2011 (Table 2), B/Texas/06/2011 

(Table 3) and B/USSR/60/69 using GenScript Real-time PCR TaqMan Primer Design 

(GenScript, Piscataway, NJ) and PrimerExpress 3.0 Software (Applied Biosystems, Foster 

City, CA). Primers/probe sets for B/USSR/60/69 are not provided for the reasons of 

intellectual property rights associated with this master donor virus. Primers/probe sets for 

universal detection of H3 and H2 subtypes, and specific detection of PB1 gene of LAIV-A 

(FluMist) were provided by Diagnostic Development Team, VSDB, Influenza Division, 

CDC (primer and probes available upon request). The rRT-PCR was performed using 

SuperScript® III Platinum®One-Step quantitative RT-PCR Kit (Invitrogen, Carlsbad, CA) 

on Mx3000P thermal cycler (Agilent Technologies, Santa Clara, CA). The reaction was 

conducted in a total volume of 25 μl containing 0.8 μM of each primer and 0.2 μM of probe 

and 5 μl of viral RNA. Reaction conditions were as follows: one cycle of 50 °C for 15 min, 

followed by 2 min at 95 °C, and 45 cycles of 15 s at 95 °C and 1 min at 60 °C. The data 

were analyzed using MxPro QPCR Software.

RNAs were extracted from viruses in allantoic fluid with known infectious titer. Serial 10-

fold dilutions were prepared in RNase-free water. Standard curves were generated with 

duplicate samples over a template dilution range of 6 logs by using obtained cycle threshold 

(Ct) with a difference between replicates of < 0.5 Ct values. The resulting Ct values for each 

dilution were plotted versus virus EID50. The linear regression analysis was applied to 

determine the slopes. By using obtained Ct values the amplification efficiencies were 

calculated as E = (10(−1/slope) − 1) × 100.
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2.6. Reassortant virus passaged in eggs for stability analysis

Reassortant MVS (Master Virus Seed) stocks were tested for genome stability and the 

absence of contamination by wt viruses after five consecutive passages in SPF eggs (An et 

al., 2009). Briefly, vaccine candidate viruses were diluted with PBS to the final virus 

concentration of 5 × 105 EID50/ml and three 10-day-old SPF eggs were inoculated with 0.2 

ml of the diluted virus. The eggs were incubated for 48 h (influenza A) or 72 h (influenza B) 

at 32 °C, then were chilled (4 °C 3 h to overnight) and allantoic fluids from each egg were 

harvested and pooled together. The virus titer was estimated in HA assay using 0.5% tRBC. 

The average ratio between number of influenza virus particles and HA units has been 

reported to be 107 particles/HA per mL with the deviation about 8%, depending of virus 

strains and type of RBC (Desselberger, 1975; Donald and Isaacs, 1954; Isaacs, 1957; Tyrrell 

and Valentine, 1957). Thus, allantoic fluid with 500 HA titer is estimated to contain about 5 

× 109 virus particles per mL. Approximately ten virus particles correspond to one EID50/mL 

(Donald and Isaacs, 1954). The infectivity of allantoic fluid with 500 HA unit would 

correspond to about 5 × 108 EID50/mL. To keep the same level of multiplicity of infection in 

the following passages, the allantoic fluid with HA titer of 500 were diluted 1000 times with 

PBS to final 5 × 105 EID50/mL and SPF eggs were inoculated with 0.2 mL/egg. After the 

5th passage in eggs, allantoic fluids were collected and clarified by low speed centrifugation 

at 300 × g for 10 min and used for further analysis.

2.7. Genomic sequence analysis

The complete viral cDNAs for each segment (PB2, PB1, PA, HA, NP, NA, M and NS) of 

the cloned viruses were synthesized from purified viral RNA using AccessQuick RT-PCR 

system (Promega, Madison, USA). Viral genome fragments (eight for PB2, PB1 and PA, six 

for HA, five for NP and NA, and three for M and NS) were amplified using overlapping 

M13 tagged gene segment specific primers. RT-PCR products were resolved by the 2% E-

Gel 96 agarose electrophoresis system (Invitrogen, Carlsbad, CA) and were purified by 

ExoSAP-IT system (Affymetrix/USB, Cleveland, OH). Sanger sequencing of the cDNA was 

performed with the M13 primers using the BigDye Terminator v3.1 Cycle Sequencing kit 

(Applied Biosystems, Foster City, CA). The sequencing extension products were purified 

using the Agencourt CleanSEQ (Agencourt/Beckman Coulter, Brea, CA) and analyzed 

using an ABI 3730xl DNA Analyzer (Applied Biosystems, Foster City, CA) and 3730 Data 

Collection v3.0 software (Applied Biosystems, Foster City, CA). Trace files were assembled 

in Sequencer (Gene Codes Corporation, Ann Arbor, MI). BioEdit Sequence Alignment 

Editor (Thomas Hall/Ibis Biosciences, Carlsbad, CA) software was used to align consensus 

sequences of gene segments with the corresponding sequences of MDV-A and wt A/

Victoria/361/2011 or MDV-B and wt B/Texas/06/2011 viruses.

3. Results

3.1. Specificity and sensitivity of the designed rRT-PCR assays

For each wt-MDV pair used to create reassortants, primers/probe sets for rRT-PCR were 

designed to match the genome of only one of the virus strain of the pair (Tables 1–3). To 

verify the specificity of the primer sets, viral RNAs were isolated and purified from 107 

EID50/mL wt and MDV viruses, and used for rRT-PCR reaction. Each virus RNA (MDV 
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and wt) was tested by rRT-PCR with all primers/probe sets designed for that pair. These 

primers amplified only a specific product. None of the cross-templates resulted in a positive 

signal, confirming that the designed primers/probe sets were strain and segment specific. 

The examples of test amplification curves are shown in Fig. 1.

The sensitivity was determined for each rRT-PCR primers/probe set for the detection of the 

undesired genetic materials in the prepared clonal MVS stocks. The amplification efficiency 

between 90% and 110% means doubling of the amplicon at each cycle. This corresponds to 

a slope of standard curve −3.1 to −3.6. Standard curves obtained showed that designed 

assays had amplification efficiency in 90–110% range and R2 values were 0.98–0.99 (Fig. 

2).

The limit of detection was determined as the lowest concentration at which positive signal 

was obtained (Table 4). The limit of detection of rRT-PCR using primer/probe sets for A/

Victoria/361/2011 PA and PB2 was at 0.08 EID50 per reaction, followed by 0.8 EID50 for 

PB1, NP, M and NS, and 1.3 EID50 for MDV-A HA and NA. In the case of influenza B 

strains, B/Texas/06/2011 PB2, PB1, PA, and NS primer/probe sets were most sensitive at 

0.1 EID50/reaction followed by 1 EID50 for NP and M. LoD for MDV-B HA NA genes 

were 1 EID50/per reaction.

3.2. Genetic homogeneity test

Using the highly specific and sensitive rRT-PCR protocol as described above, the genetic 

homogeneity of reassortant viruses, LV1 and LV2B, were analyzed using RNA 

corresponding to 105 EID50/per reaction. MDV and wt viruses were also tested as controls. 

For both reassortants, the positive signals were detected only with primers/probe specific for 

internal genes of MDV and HA and NA genes of wt (A/Victoria/361/2011 for LV1 and B/

Texas/06/2011 for LV2B). No undesired genes were detected in the reassortant viruses with 

a high sensitivity level of detection (Table 5). The data showed that the A/Victoria/

361/2011(H3N2)-CDC-LV1 reassortant does not contain genetic material from PB2, PB1, 

PA, NP, M and NS genes of A/Victoria/361/2011 or HA and NA genes of originating from 

A/Leningrad/134/17/57. Similarly, the B/Texas/06/2011-CDC-LV2B reassortant does not 

contain any genetic material of B/Texas/06/2011 genes PB2, PB1, PA, NP, M, NS or HA 

and NA genes of B/USSR/60/69 origin, confirming of genetic homogeneity of the 

reassortant viruses.

The genome sequence analysis of LV1 and LV2B was completed by alignment of the six 

internal protein gene segments (PB2, PB1, PA, NP, M, and NS) with those of corresponding 

MDVs and the two surface antigen segments, HA and NA, with the corresponding RNA 

segments of the wt A/Victoria/361/2011 or B/Texas/06/2011. The rRT-PCR analysis was 

consistent with the full genome sequence analysis. The alignment of sequences for the six 

internal gene segments of LV1 detected no nucleotide changes. LV2B contained only one 

nucleotide change in the NP gene segment (T66C) that did not result in amino acid 

substitution. No other mutations in the remaining internal gene segments were identified. 

The HA and NA sequences of LV1 were identical to one of the egg adapted A/Victoria/

361/2011. The HA sequence of wt B/Texas/06/2011, E4 isolate, which was used for 

reassortment, was shown to have a mix at position 596 (A or C) compared to E3 isolate 
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which had 596A. The A596C change led to amino acid Q200P substitution, since this 

mutation appeared during passage of virus in eggs it constitutes an egg adapted change. 

LV2B HA gene had 596C indicating the presence of 200P. NA sequence was identical to the 

NA of wt virus.

3.3. Genetic stability test

To test the genetic stability, LAIV reassortant viruses, LV1 and LV2B were subjected to 

five passages in SPF eggs. The infectious titers of original LAIV reassortants were 109.3 and 

109.2 EID50/mL for LV1 and LV2B, respectively. Passages were done with 0.2 ml of a 10−3 

dilution of the virus which corresponds to approximately 105 EID50 of virus per egg. RNA 

purified from five time passaged viruses was subjected to rRT-PCR procedure to confirm 

the homogeneity of the virus. No signal was detected in the reactions with RNA from the 

passaged LV1 reassortant when Victoria PB2, PB1, PA, NP, M, NS, or MDV-A NA and HA 

primers/probe sets were used. Similarly, no signal was detected with LV2B RNA when 

Texas internal genes and MDV-B NA and HA primers/probe sets were used, confirming 

again that the obtained reassortants were genetically homogeneous and did not contained 

genetic material of undesired origin.

The LV1 and LV2B viruses passaged five times in eggs were also characterized by complete 

full genome sequencing. Sequence alignments of all gene segments of the passaged virus 

with corresponding sequences of the original LV1 or LV2B did not reveal any nucleotide 

differences between them, indicating the genetic stability of the LAIV reassortant genome.

4. Discussion

Tests to characterize the quality of live attenuated influenza vaccine viruses are being 

continuously developed and improved (Buonagurio et al., 2006; Yeolekar and Dhere, 2012). 

The WHO recently updated recommendations to provide vaccine manufacturers and 

national regulatory authorities with guidance in developing specific processes to assure the 

quality, safety, and efficacy of live attenuated influenza vaccines for intranasal 

administration (WHO, 2009). The testing guidelines for the infectivity (potency), identity, 

sterility and stability of vaccine were outlined in this document. According to the guideline, 

LAIV candidates should be characterized by an identity test during their preparation. The 

identity test should include appropriate methods to identify the HA and NA antigens and to 

obtain phenotypic and genetic information for the vaccine viruses (WHO, 2009). Genotypic 

characterization of a vaccine virus should include its complete sequence, and may include 

analysis of viral subpopulations and its genetic stability. The stability of the genotype and 

phenotype should also be demonstrated following viral passages beyond the level used in 

vaccine production (WHO, 2009). In this study, the real-time RT-PCR assays were 

developed for both type A and type B LAIV reassortants, and its sensitivity was tested in an 

attempt to provide better identity and stability testing for quality control of LAIV candidate 

viruses.

LAIV candidates for the 2012–2013 seasons, A/Victoria/361/2011-CDC-LV1 (LV1) and B/

Texas/06/2011-CDC-LV2B (LV2B) were created by the classical viral reassortment 

method. The genetic identity of vaccine candidate viruses was demonstrated by 
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pyrosequencing assay at the stage of vaccine candidate selection. The pyrosequencing 

approach as well as most of the other current techniques used for genotyping and screening 

of reassortant influenza viruses are based on conventional RT-PCR technique (Fulvini et al., 

2011; Ha et al., 2006; Kiseleva et al., 2011; Klimov and Cox, 1995; Lee et al., 2010; 

Sakamoto et al., 1996). The sensitivity of the RT-PCR was shown to be at least log10 lower 

compared to rRT-PCR technique in a number of reports (Chen et al., 2007; Emery et al., 

2004; Kaida et al., 2008; Rodrigues et al., 2011; Zhao et al., 2007). For example, the rRT-

PCR H5 gene assay designed for avian influenza reproducibly determined lowest amount of 

viral RNA corresponding 0.05 EID50 per reaction in contrast to detection limit of 3 EID50 in 

cnRT-PCR (Chen et al., 2007). Real time RT-PCR is currently recognized as the most 

sensitive and reliable technique for detection and identification of viral subpopulations in 

diagnostics. The highest sensitivity of rRT-PCR assays was demonstrated for the detection 

of influenza viruses of different origin and composition (Chen et al., 2007; Monne et al., 

2008; Nakauchi et al., 2011; Shu et al., 2011). The rRT-PCR assays reported for detection of 

subtype H5, H7, and H9 avian influenza viruses had sensitivity from 0.5 to 2.74 EID50/per 

reaction (Monne et al., 2008). The sensitivity of rRT-PCR assays developed in the present 

study was shown to range from 0.08 to 0.8 EID50 per reaction for the detection of undesired 

genes in LV1 and from 0.1 to 1 EID50/reaction for the detection of undesired genes in 

LV2B. Therefore, primer/probe sets used in the current study allowed genome detection as 

sensitive as those reported in other studies using rRT-PCR assays (Chen et al., 2007; Monne 

et al., 2008; Spackman et al., 2002; Wise et al., 2004). However, it should be noted that 

although the designed primers and probes for MDVs are expected to work for the next 

MDV–wt reassortment pairs, the primer and probes sequences for next selected for vaccine 

wt virus must be checked and updated regularly and the limit of detection should be 

identified using that specific wt RNA.

During the vaccine manufacturing process, MVS undergoes three to four additional passages 

before blending the monovalent pool to formulate LAIV (Buonagurio et al., 2006; WHO, 

2009). It is important to determine that no other genetic material is present in the MVS 

which could be assured by rRT-PCR homogeneity test. In the present study, the 

homogeneity of the original and passaged LV1 and LV2B viruses were analyzed by rRT-

PCR and genetic stability was confirmed by complete sequencing of all gene segments. The 

rRT-PCR data demonstrate that neither of the reassortant viruses contained genetic material 

from internal genes of wt parental viruses or HA and NA genes of MDV origin with a high 

sensitivity levels of assays (Table 5). The rRT-PCR results were confirmed by sequencing 

analysis. No nucleotide change was found in sequences of passaged five times LV1 or 

LV2B viruses indicating the high level of genetic stability. The data obtained in the present 

study are in good agreement with the previous study on genetic stability of FluMist/CAIV-T 

vaccine, which demonstrated a remarkable sequence identity for all vaccine intermediates 

throughout the manufacturing process (Buonagurio et al., 2006)

The fact that no undesired genes were detected after five passages of MVS by rRT-PCR 

proves that the developed rRT-PCR assays were adequate and sufficient to provide the 

evidence for the homogeneity of the prepared vaccine candidate. In conclusion, both rRT-

PCR and sequencing results provide conclusive safety controls for further manufacturing 

processing of MVS. The real-time RT-PCR assays developed in the present study are in 
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compliance with WHO recommendations to provide further quality control steps to ensure 

safe use of LAIV.
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Fig. 1. 
Fluorescence amplification curves of rRT-PCR assays using RNAs purified from A/

Victoria/361/11 (Vic) or MDV-A (Len) (A and B) or B/Texas/06/2011 (Tex) or MDV-B 

(USSR) (C and D). Primer/probe sets for Vic PA (A), Len PA (B), Tex PB2 (C) or USSR 

PB2 (D) were used for the reactions.
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Fig. 2. 
Standard curves demonstrating the limit of detection studies of rRT-PCR assays for PA gene 

of A/Victoria/361/11 (A), PA gene of MDV-A (B), PB2 gene of B/Texas/06/2011 (C) and 

PB2 gene of MDV-B (D). Ten-fold dilutions of viral RNA were plotted against the threshold 

cycle. The coefficient of determination (R2 ) and the equation of the regression curve (y) 

calculated are shown.
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Table 1

Primers and probes used for real-time RT-PCR amplification of A/Leningrad/134/17/57 (H2N2).

Primers/probesa Gene Nucleotides Sequence 5′→3′

NSLenF150 NS 150–169 CGGTCTGAACATCGAAACAG

NSLenR230 NS 210–230 AGTGCCTCATCGGATTCTTCC

NSLenP197r NS 173–197 FAM-TCCACTATCTGCTTTCCAACACGGG-BHQ1

MLenF427 M 427–445 GCCTTGGGCCTGGTATGTG

MLenR488 M 465–488 CTATGAGACCTATGCTGGGAGTCA

MlenP447 M 447–463 FAM-AACCTGTGAACAGATTG-BHQ1

NALenF946 NA 946–965 TATGTGTGCTCAGGGCTTGT

NALenR1041 NA 1021–1041 TGGATTCCCTCTCTCATTGTT

NALenP967 NA 967–986 FAM-GGCGACACACCCAGGAACGA-BHQ1

NPLenF743 NP 743–764 CAGGAAATGCTGAGATCGAAGA

NPLenR813 NP 789–813 AGCAACTGACCCTCTCAATATGAGT

NPLenP769 NP 769–785 FAM-ATCTTTCTGGCACGGTC-BHQ1

PALenF1222 PA 1222–1242 CAGAATGAGTTCAACAAGGCA

PALenR1301r PA 1282–1301 GGAGCCACATCTTCTCCAAT

PALenP1243 PA 1243–1265 FAM-TGCGAGCTGACCGATTCAATCTG-BHQ1

PB2LenF976 PB2 976–995 GGCGGGTTCACATTTAAGAG

PB2LenR1053 PB2 1034–1053 TGTTTGAAGATTGCCCGTAA

PB2LenP1026r PB2 1001–1026 FAM-TTCCTCTCTCTTGACTGATGATCCGC-BHQ1

a
F and R in the primer name indicate forward and reverse direction, respectively. P indicates probe, and r indicates probe in reverse direction.
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Table 2

Primers and probes used for real-time RT-PCR amplification of A/Victoria/361/2011 (H3N2).

Primers/probesa Gene Nucleotides Sequence 5′→3′

NSVicF149 NS 149–169 TCGGTCTAGACATCAAAGCAG

NSVicR234 NS 211–234 TTTAAGTGCCTCATCAGATTCTTC

NSVicP170 NS 170–193 FAM-CCACCCATGTTGGAAAGCAAATTG-BHQ1

MVicF809 M 809–833 TGGATTCTTGATCGTCTTTTTTTCA

MVicR875 M 854–874 GCCTCTTTTAAGGCCGTGTTT

MVicP834 M 835–851 FAM-ATGCGTCTATCGACTCT-BHQ1

NAVicF1106 NA 1106–1125 CGTCACGCTTAGGGTATGAA

NAVicR1215 NA 1197–1216 AACCGGACCTATCACCTCTG

NAVicP1136 NA 1136–1158 FAM-TCATTGAAGGCTGGTCCAACCCT-BHQ1

NPVicF838 NP 838–858 GCGTATGGACCTGCAGTATCC

NPVicR908 NP 888–908 GGGTCTATTCCCACCAAGGAA

NPVicP861 NP 861–878 FAM-TGGGTACGACTTCGAAAA-BHQ1

PAVicF1280 PA 1280–1299 AAATTGGAGAGGACGTAGCC

PAVicR1360 PA 1341–1360 TACAATGGGACACCTCTGCT

PAVicP1300 PA 1300–1323 FAM-CCAATTGAGCACATTGCAAGCATG-BHQ1

PB1VicF659 PB1 659–679 GAGCTTTGACATTGAACACGA

PB1VicR731 PB1 712–731 GGTGTTGCAATAGCCCTTCT

PB1VicP704r PB1 680–704 FAM-TTGCCTCTCTCTGCATCTTTGGTCA-BHQ1

PB2VicF999 PB2 999–1017 AAGCGGGTCATCAGTCAAA

PB2VicR1076 PB2 1052–1076 CCCTCATGTACTCTTATTCTCAATG

PB2-VicP1050r PB2 1024–1050 FAM-TTGGAGATTGCCTGTAAGCACCTCTTC-BHQ1

a
F and R in the primer name indicate forward and reverse direction, respectively. P indicates probe, and r indicates probe in reverse direction.
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Table 3

Primers and probes used for real-time RT-PCR amplification of B/Texas/06/2011.

Primers/probesa Gene Nucleotides Sequence 5′ →3′

HATex_F226 HA 226–245 ACAGATCTGGATGTGGCCTT

HATex_R287 HA 267–287 GCTTTAGCAGAAGGTGTGGTC

HATex_P266r HA 247–266 FAM-CCCACACACATTGGCCTGCC-BHQ1

NATex_F718 NA 718–737 ATAACTGATGGCCCAGCTTC

NATex_R837 NA 817–837 GCATGTGCATTCCTCAGTATG

NATex_P779r NA 753–779 FAM-CGGCCTTCTCGAATCTTAAGGAATCTG-BHQ1

MTex_F256 M 256–275 ATGGGAACAACAGCAACAAA

MTex_R358 M 339–358 CATGGCCTTCTGCTATTTCA

MTex_P304r M 282–304 FAM-TTCTCTCAGCCAGAATCAGGCCC-BHQ1

NSTex_F377 NS 377–396 GGAGGTGCCTTGATGACATA

NSTex_R461 NS 438–461 TCTTTGTTGTTCATGTCCCTTAAT

NSTex_P426r NS 403–426 FAM-TGGGCCATCAACATCATCTGGTTC-BHQ1

NPTex_F159 NP 159–179 AGCAACCACAAGCAGTGAAGA

NPTex_R298 NP 279–298 TGAGTCCAGCTTTGACCATC

NPTex_P263r NP 243–263 FAM-TCGCCCAGTTTCACCACCATG-BHQ1

PATex_F260 PA 260–279 TAGCATGGATGGTCCAAAGA

PATex_R338 PA 316–338 TAATCAAACAAATCAGCCAGATA

PATex_P314r PA 288–314 FAM-TTGGGAGTCTCTATCCCATGCTCTTGA-BHQ1

PB1Tex_F141 PB1 141–166 TGAGTACTCGAACAAAGGAAAACAGT

PB1Tex_R215 PB1 194–215 GGCCCATTTGTTGGATCTATCA

PB1TexP168 PB1 168–187 FAM-TGTTTCTGACATCACAGGAT-BHQ1

PB2Tex_F587 PB2 587–607 AAGGAACGATGATAACTCCCA

PB2Tex_R657 PB2 637–657 GAACCTTCTCCTGGCAACTAA

PB2Tex_P636r PB2 614–636 FAM-TTCCCTCTCGAGCATGTATGCCA-BHQ1

a
F and R in the primer name indicate forward and reverse direction, respectively. P indicates probe, and r indicates probe in reverse direction.
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Table 4

Detection limits of each rRT-PCR assay.

Virus strain Primers/probe
Limit of detection 
(EID50/rxna)

Virus strain Primers/probe
Limit of detection (EID50/
rxn)

A/Victoria/361/2011 PB2V 0.08 B/Texas/06/2011 PB2T 0.1

PB1V 0.8 PB1T 0.1

PAV 0.8 PAT 0.1

NPV 0.8 NPT 1

MV 0.8 MT 1

NSV 0.8 NST 0.1

MDV-A H2 1.3 MDV-B HAU 1

NAL 1.3 NAU 1

a
rxn, rRT-PCR reaction containing 5 μl of RNA.
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Table 5

Cycle threshold (Ct values of RNA from LV1 and LV2B corresponding to 105 EID50/per reaction.

Gene A/Victoria/361/2011(H3N2)-CDC-LV1
Assays specific for

B/Texas/06/2011-CDC-LV2B
Assays specific for

A/Leningrad/134/17/57 (MDV-A) wt A/Victoria/361/2011 B/USSR/60/69 (MDV-B) wt B/Texas/06/2011

PB2 22.23 No Ct
a 22.81 No Ct

PB1 21.45 No Ct 23.08 No Ct

PA 21.14 No Ct 22.35 No Ct

NP 22.27 No Ct 22.91 No Ct

M 22.39 No Ct 20.73 No Ct

NS 21.31 No Ct 23.11 No Ct

HA No Ct 22.89 No Ct 22.07

NA No Ct 21.76 No Ct 20.46

a
No signal was detected after 40 cycles of amplification.
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